Abstract:Shoot status, such as orientation and connection to the root system, and sediment burial depth after flooding disturbances have important ecological consequences on the post-flooding growth and vegetative reproduction of emergent macrophytes in wetlands. In the present study, we investigated the effect of shoot status (vertical, prostrate, or detached) and sediment burial depth (0.5 or 10 cm) on biomass accumulation and propagule production in Phalaris arundinacea (Poaceae) using an outdoor mesocosm system. In contrast to our prediction that shallow sediment burial would activate the axillary buds on prostrate shoots and regenerate more ramets, significantly fewer new ramets, rhizomes, buds, and biomass accumulation formed in P. arundinacea as the shoots changed from vertical to prostrate. Deeper sediment burial resulted in lower biomass and propagule production in plants with prostrate shoots, whereas vertical shoots increased the number of ramets. Parundinacea with detached shoots also produced a number of propagules after shallow or deep sediment burial, which might be important for the long-distance dispersal of P. arundinacea. These results suggest that P. arundinacea is a potentially invasive species in many lacustrine wetlands, particularly those with a high sedimentation rate, due to its high capacity for vegetative propagation.