Abstract:Sanjiang Plain is the largest freshwater marsh in China, where plant zonation along waterlevel gradients is a common phenomenon. The aim of this experiment was to identify the role of water level and nutrient availability on plant zonation in the plain. Growth and root morphology of three perennial emergent macrophyte species were investigated by growing in two water levels (0.1 and 10.0 cm, relative to soil surface) and in two levels of nutrient supply (0 and 0.5 g slow-release fertilizer per container). In the plain, Carex lasiocarpa typically occurs at low elevations, Glyceria spiculosa at medial elevations, and Deyeuxia angustifolia at high elevations. The relative growth rate was the highest in C. lasiocarpa and the lowest in D. angustifolia in the 10.0-cm water level. Among the three species, only total biomass of D. angustifolia was affected by water level, and decreased with increasing water level. High nutrient supply led to increased total biomass in C. lasiocarpa and G. spiculosa. High water level led to an increased root diameter in G. spiculosa and a decreased root length in C. lasiocarpa. In the 10.0-cm water level, low nutrient supply led to thinner roots in D. angustifolia, but resulted in an increased specific root length (SRL) in C. lasiocarpa and root diameter in G. spiculosa. Water-level effect on root porosity was only observed in G. spiculosa, and nutrient amendment did not influence root porosity in all the species. These data indicate that both nutrient and water level are important factors regulating plant distribution pattern in the Sanjiang Plain, because both C. lasiocarpa and G. spiculosa are relatively sensitive to nutrient supply whereas D. angustifolia is sensitive to water level.