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† Background and Aims Both sediment and light are essential factors regulating the growth of submerged
macrophytes, but the role of these two factors in regulating root morphology and physiology is far from clear.
The responses of root morphology and physiology to sediment type and light availability in the submerged plant
Myriophyllum spicatum were studied and the hypothesis was tested that a trade-off exists in root growth strategy
between internal aeration and nutrient acquisition.
† Methods Plants were grown on two types of sediment (fertile mud and an infertile mixture of mud and sandy loam)
and under three levels of light availability (600, 80 and 20 m mol m22 s21) in a greenhouse.
† Key Results The significantly higher alcohol dehydrogenase (ADH) activity in root tissues indicated that oxygen
deficiency existed in the plants growing in fertile mud and low (or high) light environments. Significantly, low plant
N and P concentrations indicated that nutrient deficiency existed in the mixed sediment and high light environment.
As a response to anoxia, plants did not change the porosity of the main roots. The effect of sediment type on root
morphology was insignificant under higher light environments, whereas root diameter generally decreased but
specific root length (SRL) increased with decreasing light availability. Both low light and fertile mud jointly led
to lack of second-order laterals. More biomass was allocated to lateral roots in infertile environments, whereas
mass fractions of laterals were lower in low light and mud environments.
† Conclusions These data indicate that this plant can achieve the trade-off between internal aeration and nutrient
acquisition by adjusting the structure of the root system and the pattern of biomass allocation to different root
orders rather than root morphology and root porosity.

Key words: Adaptation, aeration, anoxia, biomass allocation, nutrient, morphological plasticity, oxygen, root system,
submerged macrophytes, Myriophyllum spicatum.

INTRODUCTION

Sediment plays an important role in the supply of nutrients
for submerged macrophytes, since it is the primary source
for the uptake of N, P, Fe, Mg and micronutrients (Bark
and Smart, 1981; Barko et al., 1991). However, sediment
properties affecting the growth of aquatic macrophytes,
such as density, organic matter content and redox status,
are numerous and complex (Barko and Smart, 1986b;
Barko et al., 1991). In most natural situations, unfavourable
and favourable conditions for plant growth usually co-occur
in the same sediment. For example, fertile mud contains
high organic matter content with anaerobic conditions,
and infertile sandy sediment contains low organic matter
content with aerobic conditions. Hence, nutrient acquisition
and oxygen supply might be a trade-off for the growth of
roots in aquatic macrophytes. However, little is known
about how aquatic plants adjust their root traits to adapt
to the dilemma in the sediment environment.

In submerged macrophytes, light availability is funda-
mental to primary production, not only because light facili-
tates inorganic carbon acquisition and plant growth, but
also because light regulates photosynthetic oxygen evol-
ution and allows plants to survive in anoxic sediments via
root aeration (Sand-Jensen et al., 1982; Smith et al.,

1984; Barko and Smart, 1986a; Sorrell, 2004). Recently,
Sorrell (2004) reported that photosynthetic oxygen evol-
ution in Isoetes alpinus is closely related to light
availability and plays an important role in regulating
root anaerobiosis. The lack of oxygen usually leads to
typical anoxic symptoms in plant tissues, such as a high
ethanol content and alcohol dehydrogenase (ADH) activity.
Therefore, the capacity to transport sufficient oxygen to
underground tissues to sustain aerobic metabolism is criti-
cal to plant survival (Sorrell, 1994; Geigenberger, 2003;
Sorrell, 2004). Root porosity is usually used as an indicator
of the capacity to deliver oxygen to below-ground tissues,
since root aeration occurs by virtue of the lacunar gas trans-
port system (Jensen et al., 1969). Additionally, plants
cannot transport photosynthetic oxygen to roots and do
not have enough building material to make morphological
changes under lower light because of inactive photosyn-
thesis and limited oxygen production. Thus, light avail-
ability might also be an important factor adjusting root
morphology and physiology.

Root growth is highly responsive to conditions that stress
the plant in nutrient and oxygen shortage. A fine and long
root, a high lateral root density and a high root : shoot ratio
are favourable for nutrient acquisition by increasing total
root length and root area (Eissenstat, 1992; Barber, 1995;
Wahl et al., 2001; Xie and Yu, 2003; Xie et al., 2005).* For correspondence. E-mail: yonghongxie@163.com
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However, thin roots can hamper root function in supplying
oxygen (Fitter, 1996). Under anaerobic environments,
plants would enhance the ability for oxygen supply and/or
reduce the loss of oxygen by growing thicker roots and
fewer laterals, and having a low root: shoot ratio
(Armstrong, 1979; Visser et al., 1996). Therefore, root
traits favouring nutrient acquisition might be disadvanta-
geous in conducting oxygen.

In submerged macrophytes, root growth is usually related
to nutrient acquisition rather than internal aeration, and
light availability is generally linked to photosynthesis
rather than root biology. The aim of this study is to eluci-
date how submerged macrophytes combine these conflict-
ing traits into an optimal root growth strategy. To this
end, Myriophyllum spicatum L., a perennial submerged
plant with two orders of lateral roots, was chosen for this
experiment because this plant is a common species of fresh-
water lakes in the world (Grace and Wetzel, 1978) and can
grow on different sediment types and in relatively low light
environments, such as extra-eutrophical waters. The plant
was grown on two sediment types and under three levels
of light availability to test the following hypotheses. First,
in infertile mixture and high light conditions, it is expected
that the root will become thinner and longer and more
biomass will be allocated to roots (especially laterals) to
increase root–sediment contact because of the low nutrient
status of a mixture. Secondly, in fertile mud and high light
conditions, roots will be thicker and shorter and they will
have higher porosity to increase transportation of oxygen
because of anaerobic conditions in the mud and active
photosynthesis under high light. Thirdly, in fertile mud
and low light conditions, less biomass will be allocated to
roots (especially laterals) to reduce the loss of oxygen
because of inactive photosynthesis under low light.

MATERIALS AND METHODS

Plant material

Myriophyllum spicatum was collected from Liangzi
Lake (30860 –308180N, 114.240 –1148360E), Hubei Province,
China. Upon collection, the apical 20 cm of the shoots were
cleaned, transported to a greenhouse in the Northeast
Institute of Geography and Agricultural Ecology, the
Chinese Academy of Sciences, and pre-incubated in tap
water for 7 d, during which time the temperature was
controlled at 30+ 1 8C during the day and 22+ 1 8C at
night. Light was provided at 300 mmol photons m22 s21

(PPFD) in a 14 h light/10 h dark cycle.

Experimental set-up

After pre-incubation, two 12-cm long apical shoots were
planted in each sediment-filled plastic tray (3 L, 8.5 cm in
height) with the lower 2 cm buried in the sediment. After
the shoots had grown for 5 d, the light treatment was
started. Experimental treatments consisted of two sediment
types [mud and a 5 : 95 (v/v) mixture of mud and sandy
loam] and three levels of light availability (600, 80 and
20 mmol photons m22 s21). The three light regimes were

chosen on the basis of relationships between light intensity
and photosynthesis and between light intensity and oxygen
evolution of some submerged species (Salvucci and Bowes,
1982; Frost-Christensen and Sand-Jensen, 1995; Sorrell,
2004). Compared with the mixture, the mud had high con-
tents of organic matter, exchangeable N and P, and the Eh
value at 5 cm sediment depth was lower (Table 1). A total
of 36 trays were placed into six 300 L plastic bins (65 cm in
height, six trays per bin). For each light treatment, two
bins were used and each bin contained three trays per sedi-
ment type. Tap water (containing 4.3 mM NH4

þ-N, 16.8 mM

NO3-N, 1.9 mM PO4
3-P) was supplied during plant growth,

and was replaced completely every 3–4 d. Sodium bicar-
bonate was added to reach 20 mmol L21, and the pH was
adjusted daily to 7.0 using 0.1 M NaOH or HCl during the
experimental period.

Root characteristics

The plants were harvested after 35 d. After removal from
the sediments they were carefully cleaned with tap water,
divided into leaves, stems and roots, and were separately
weighed. Biomass per plant in each tray was the mean of
the two plants. Some root tissues were used for measure-
ment of root porosity and the activity of ADH (see
below), and the others were used for estimation of root
characteristics. For each treatment, 12–15 representative
intact adventitious roots were chosen and divided into six
groups (2–3 roots per group). Adventitious roots in each
group were then divided into main roots, and first- and
second-order laterals, and were weighed separately. The
diameter of main roots, and first- and second-order laterals
was evaluated using a microscope with an ocular
micrometer, and was replicated 30, 50 and 50 times,
respectively. The specific root length (SRL) of different
orders of roots was calculated as the ratio of root length
to root mass. For each measurement, 3–4 main roots and
5–7 laterals (first- and second-order) were randomly
chosen from different plants as a group to determine the
SRL. Each treatment and each order of root was replicated
six times. Plant parts were then oven dried at 85 8C for 48 h
to a constant weight. All fresh weights were transformed
into dry weights.

Biomass allocation

The lateral root : main root mass ratio was calculated as
the ratio of total lateral root (first- and second-order)
mass to main root mass; and the second-order : first-order

TABLE 1. Chemical characteristics of the two types of
sediment used in the experiment (means+ s.e., n ¼ 3)

Organic
matter

(mg g21)
Exchangeable

N (mg g21)
Exchangeable

P (mg g21)

Eh values
at 5 cm

depth (mV)

Mud 30.0+1.2 135.3+12.4 37.1+2.1 –76+10
Mixture 1.2+0.0 17.7+1.8 6.9+0.8 270+32
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lateral root mass ratio as the ratio of second-order lateral
root mass to first-order lateral root mass. The mass of
main root, total lateral root, and first- and second-order
lateral root in each plant was calculated from the root
mass and the mass ratio of different orders of roots. In
order to perform a functional growth analysis on biomass
allocation to correct for size differences between plants,
adjusted allometric analysis (biomass fractions in allo-
cation) suggested by Poorter and Nagel (2000) was
applied. An advantage is that biomass fractions are less sen-
sitive to small changes in allocation when roots form
,20% of the biomass. Biomass fractions can be calculated
as the mass of each organ relative to the biomass of the total
plant. In this experiment, an analysis of allocation was
applied using six compartments: shoots, roots, main roots,
total laterals, and first- and second-laterals.

Root porosity

Roots from different treatments were examined for poros-
ity (percentage of air-filled volume) by the pycnometer
method (Jensen et al., 1969). Representative fresh adventi-
tious roots (.5 cm in length) were removed intact, and
were separated into main roots and laterals. The porosity
of the main roots was determined using 0.1–0.3 g of root
tissues and a 25 mL pycnometer. Three determinants per
treatment were made using a vacuum pump.

The activity of ADH

ADH activity was measured in roots as a direct indicator
of oxygen deficiency in root tissues (Mendelssohn and
McKee, 1992), since oxygen is essential as the terminal
electron acceptor in the oxidative phosphorylation
pathway (Geigenberger, 2003). For extraction and assay
of ADH activity, 1 . 0–1 . 5 g of fresh root were homogen-
ized (ice bathed) with a mortar in 5 mL of 50 mM HEPES
buffer (pH 7.3), which contained 5 mM MgCl2 and
1 mmol L21 phenylmethyl sulfonyl fluoride (PMSF). The
plant extracts were centrifuged at 22 942 g for 20 min at
48C using a Sigma 3–18 k high-speed refrigerated centri-
fuge (Sigma Company, Germany). ADH activity was
tested at 308C as follows: 0.1 mL of extract was added to
a reaction cuvette containing 2.85 mL of assay buffer [con-
stituted by 15% of 1.0 M Tris (pH 8.0), 3% of 0.01 M NADþ

and 82% of distilled water] and 0.03 mL of 95% ethanol,
and read against a reference cell containing all components
except ethanol. The rate of NADþ deoxidation was fol-
lowed for 10–20 min on a TU-1901 spectrophotometer
(Beijing Puxitongyong Company, China) at 340 nm
(Tang, 1999).

Plant N and P concentrations

Upon collection, plant parts were ground into powder,
and mixed together for measurement of plant chemistry.
All samples were digested with H2SO4–H2O2, and analysed
for plant N and P concentrations using colorimetric analysis
on a TU-1901 spectrophotometer (Shi, 1994). Three repli-
cates were used to determine plant N and P concentrations.

Statistical analysis

Multiple comparisons of means were performed by
Duncan’s test at the 0.05 significance level. A two-way
analysis of variance (ANOVA) was used to determine the
effects on root characteristics, root porosity, ADH activity,
and plant N and P concentrations. Data were log10-
transformed if necessary to reduce heterogeneity of var-
iances, and homogeneity was tested using Levene’s test.
All biomass fractions were square-root-transformed to
meet with the assumptions of normality and homosce-
dasticity. Normality was assessed by Kurtosis test, and
homoscedasticity was tested using Levene’s test. The exper-
iment was a split-plot design, so two split-plot ANOVAs
were applied. First, an ANOVA with light as the main
plot and bin as the sub-plot was performed to identify the
effect of bin on biomass accumulation and biomass
allocation. Secondly, if bin had insignificant effects,
another ANOVA with light availability as the main
plot and sediment type as the sub-plot was applied to test
for the combined effects on biomass accumulation and
biomass allocation to different plant organs.

RESULTS

Biomass accumulation

Split-plot ANOVAs with light as the main plot and bin as
the sub-plot showed that biomass accumulation and
biomass allocation to different plant organs were unaffected
by bin, without interaction with light availability (P .
0.05). Both sediment type and light availability signifi-
cantly affected biomass accumulation (P , 0.001, Fig. 1,
Table 2). In the same sediment, biomass decreased with
decreasing light availability (P , 0.05). Under high light
environments, plants in mud accumulated the highest
biomass (P , 0.05), whereas sediment effects were insig-
nificant under medium or low light availability (P . 0.05).

FI G. 1. Biomass accumulation (means+ s.e., n ¼ 6) of Myriophyllum
spicatum growing on two types of sediment and under three levels of
light availability. Different letters indicate significant differences among
treatments. Multiple comparisons of means were performed by Duncan’s

test at the 0.05 significance level.
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Plant N and P concentrations

Both sediment type and light availability had significant
effects on plant N and P concentrations (P , 0.05, Table 2).
Plant N and P concentrations in the mud were generally
higher than those in the mixture of mud and sandy loam,
except for plant N concentration in the medium and low
light (P , 0.05, Fig. 2).

Root physiological response

ADH activity in root tissues varied from 1.5 to
36.7 mmol g21 f. wt h21 in the six treatments (Fig. 3).
Both sediment type and light availability had significant
effects on ADH activity (P , 0.05, Table 2). Increased
ADH activity indicated that oxygen deficiency in root
tissues occurred in mud and low (high) light environments.
The porosity of the main roots was unaffected by both
sediment type and light availability (P . 0.05, Table 2),
indicating that the capacity of root aeration in this species
was independent of the environment.

Root characteristics

Both sediment type and light availability had significant
effects on root diameter (with significant sediment � light
interaction, P , 0.05) except for the diameter of first-order
laterals, which was affected by light availability alone (P ,
0.05, Tables 2 and 3). Second-order laterals only occurred
in four treatments; they did not occur in medium light þ
mud or in low light þ mud. Furthermore, second-order lat-
erals in the mixture þ low light were ,, 5%, so these were
disregarded in all the statistics (Table 3). Under high or
meduim light conditions, the diameter and SRL of different
orders of roots were unaffected by sediment type (P .
0.05, Tables 2 and 3), except for second-order laterals.
Root diameter generally decreased but SRL increased
with decreasing light availability (P , 0.05), except for
the diameter and SRL of main roots in mud.

Biomass allocation

Biomass allocation to shoots was unaffected by both light
availability and sediment type (P . 0.05, Tables 2 and 3).
However, the allocation to roots and different root orders
was affected by both sediment type and light availability
(P , 0.05, Tables 2 and 3), except for the mass fraction
of main roots, in which just an interaction was found

TABLE 2. Summary of split-plot ANOVAs on biomass
accumulation and biomass allocation, and two-way ANOVAs
on root characteristics and plant nutrient concentrations of
Myriophyllum spicatum growing on two types of sediment

and under three levels of light availability

Dependent variables
Sediment type
(S) (F-values)

Light
availability (L)

(F-values)
S � L

(F-values)

Split-plot ANONA
Biomass per plant (g) 38.875*** 38.312*** 183.999***
Shoot mass fraction 2.514ns 1.206ns 2.263ns

Root mass fraction 12.777** 6.832* 7.874**
Mass fraction of
main roots

2.717ns 0.057ns 4.909*

Mass fraction of total
lateral roots

134.116*** 39.886*** 32.718***

Mass fraction of
first-order lateral
roots

100.687*** 35.703*** 22.859***

Two-way ANOVA
Plant N concentration
(mg g21)

7.845* 70.609*** 6.976*

Plant P concentration
(mg g21)

805.843*** 197.514*** 50.564***

ADH activity
(mmol g21 f. wt h21)

141.058*** 77.368*** 10.380**

Porosity of main
roots (%)

0.000ns 0.165ns 0.006ns

Diameter of main
roots (mm)

9.714** 16.348*** 9.478***

Diameter of
first-order lateral
roots (mm)

3.385ns 77.597*** 0.239ns

SRL of main roots
(m g21)

8.753** 16.634*** 15.062***

SRL of first-order
lateral roots (m g21)

21.515*** 72.578*** 3.519*

d.f. 1 2 2

Signifance: *P , 0.05; **P , 0.01; ***P , 0.001.

FI G. 2. Plant N and P concentrations (means+ s.e., n ¼ 3) of
Myriophyllum spicatum growing on two types of sediment and under
three levels of light availability. Different letters indicate significant differ-
ences among treatments. Multiple comparisons of means were performed

by Duncan’s test at the 0.05 significance level.
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(P , 0.05, Table 2). The effects of light availability on the
mass fraction of the main roots depended on sediment type.
Plants generally allocated more biomass to main roots and
less to first-order laterals in mud and low light environments
(P , 0.05), and more biomass was allocated to lateral roots
(especially second-order laterals) in the infertile mixture
and high light availability (P , 0.05).

DISCUSSION

Compared with the treatment of mud and high light, lower
biomass accumulation, plant N and P concentrations and
ADH activity suggest that the factor limiting plant growth
in the mixture and high light environments was nutrient
supply rather than oxygen. It was surprising that the
effects of sediment type on the diameter and SRL of
main roots and first-order laterals were undetectable under
high light environments. These results largely contradict
our initial hypothesis that roots are finer and longer in the
mixture and high light environment due to nutrient
deficiency. Literature data on other species are also contro-
versial regarding the responses to infertile environments in

terms of root diameter and SRL. Many studies have shown
that a fine root and a high SRL are functionally adaptive
responses to infertile environments, by increasing total
root length and root–sediment contact (Eissenstat, 1992;
Barber, 1995; Xie and Yu, 2003; Xie et al., 2005). These
results indicate that the root morphological responses are
species specific, and that characteristics other than root
morphology might account for a plant’s adaptation to nutri-
ent availability.

Compared with the treatments of mixture and low (or
high) light, significantly higher ADH activity in root
tissues indicates that oxygen deficiency existed in the
plants growing in mud and low (or high) light environ-
ments, although oxygen in water may diffuse into the
shoot lacunae and to the roots in this type of experiment
(Sorrell and Dromgoole, 1987; Pedersen et al., 1998). As
a response to anoxia, the porosity of the main roots of
M. spicatum was unaffected by both sediment type and
light availability, indicating that the oxygen transportation
capacity was not enhanced due to anoxia. Actually, sedi-
ment oxygen demand has little effect on aeration of the
main roots due to their low wall permeability and high
surface impedance (Sorrell et al., 2000), which is consistent
with our study. In low light regimes, the accumulation of N
and P in plant tissues and a higher ADH activity in roots
indicated that the factors limiting plant growth in low
light environments were light and oxygen, rather than nutri-
ents. Therefore, the fact that no changes in root porosity
occurred may be a result of inactive photosynthesis,
which in turn cannot provide enough building material to
make changes. However, the responses in high light
environments completely reject our hypothesis, which pre-
dicts that root porosity will increase in high light and mud
environments as a result of anaerobic conditions in the mud
and active photosynthesis under high light.

In high or medium light regimes, root diameter and SRL
were also unaffected by sediment type, although root diam-
eter generally decreased but SRL increased with reduced
light availability. These responses are also inconsistent
with some wetland or emergent species. For example,
most Rumex plants produce unbranched adventitious roots
with a large diameter in response to flooding (Visser
et al., 1996), and flooding usually leads to a large number
of short fine laterals in rice near the surface soil (Kirk,
2003). Xie et al. (2005) reported that fertile sediments led
to no variation in SRL and an increase in root diameter of
Vallisneria natans, a submerged plant without lateral
roots. These responses are beneficial for a plant’s adaptation
to anoxia, by increasing oxygen transportation to root rhizo-
sphere or by placing roots in the top soil of relatively high
oxygen concentrations (Armstrong, 1979; Kirk, 2003).
However, our study is consistent with another study,
which found that none of the three grasses Spartina
anglica, Puccinellia maritime and Elymus pycnanthus
showed an increased root diameter due to flooding or to
reducing soil conditions (Bouma et al., 2001). Therefore,
neither root porosity nor morphology can explain the
root’s adaptation to anoxia.

Another interesting finding is that M. spicatum can adjust
biomass allocation to different orders of roots and the

FI G. 3. ADH (alcohol dehydrogenase) activity and porosity of main roots
(means+ s.e., n ¼ 3) in Myriophyllum spicatum growing on two types of
sediment and under three levels of light availability. Different letters indi-
cate significant differences among treatments. Multiple comparisons of

means were performed by Duncan’s test at the 0.05 significance level.
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structure of the root system according to the light and sedi-
ment environment. These responses support our initial
hypothesis on the response of biomass allocation, which
predicts that more biomass will be allocated to roots
(especially laterals) in infertile and high light environments
and less to roots (especially laterals) under fertile mud and
low light conditions. In infertile (high light and mixture)
environments, the development of lateral roots was stimu-
lated and more biomass was allocated to lateral roots
(especially second-order laterals). Although root mor-
phology was independent of sediment type, the increased
biomass allocation to lateral roots can considerably increase
total root length and root–sediment contact in infertile
environments, since SRL was highest in second-order lat-
erals, intermediate in first-order laterals and lowest in the
main roots. Therefore, a high mass fraction of lateral
roots is favourable for nutrient acquisition in infertile
environments (Eissenstat, 1992; Xie and Yu, 2003). In
high (or low) light and mud environments, the aeration
capacity of the main roots was independent of environ-
mental factors, but the development of lateral roots was
inhibited and less biomass was allocated to laterals. It is
known that radial oxygen loss can take place in different
amounts and at different locations in the roots, but it
often occurs at the laterals and close to the root tip
(Armstrong and Armstrong, 2001; Colmer, 2003).
Therefore, fewer (or lack of) second-order laterals, a low
mass fraction of laterals and a high mass fraction of main
roots in anoxic environments can substantially reduce
total root length and the number of root tips, which in
turn reduces radial oxygen loss of root systems. The mech-
anism of adaptation to anoxia in this species might be

closely related to reduced radial oxygen loss rather than
increased capacity of oxygen transportation to root
systems. Taken together, this plant can achieve the trade-off
between internal aeration and nutrient acquisition by adjust-
ing the structure of the root system and the pattern of
biomass allocation to different root orders.
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